On the local convergence study for an efficient k-step iterative method

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient three-step iterative method with sixth-order convergence for solving nonlinear equations

The aim of this paper is to construct an e¢ cient iterative method to solve nonlinear equations. This method is obtained from M. Javidi’s method (Appl. Math. Comput. 193 (2007) 360-365), which is third-order. The convergence order of new method is established to six and the e¢ ciency index is 1.5651. The Proposed method is compared with the second, third and sixth order methods. Some numerical ...

متن کامل

Local Convergence of an Efficient High Convergence Order Method Using Hypothesis Only on the First Derivative

We present a local convergence analysis of an eighth order three step method in order to approximate a locally unique solution of nonlinear equation in a Banach space setting. In an earlier study by Sharma and Arora (2015), the order of convergence was shown using Taylor series expansions and hypotheses up to the fourth order derivative or even higher of the function involved which restrict the...

متن کامل

AN ITERATIVE METHOD WITH SIX-ORDER CONVERGENCE FOR SOLVING NONLINEAR EQUATIONS

Modification of Newtons method with higher-order convergence is presented. The modification of Newtons method is based on Frontinis three-order method. The new method requires two-step per iteration. Analysis of convergence demonstrates that the order of convergence is 6. Some numerical examples illustrate that the algorithm is more efficient and performs better than classical Newtons method and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2018

ISSN: 0377-0427

DOI: 10.1016/j.cam.2018.02.028